Compared to Portland cement (made from chalk and clay and resembling Portland stone in color), which is one of the leading types in use throughout the world today, Ferrock is actually five times stronger. It can withstand more compression before breaking and is far more flexible, meaning it could potentially resist the earth movements caused by seismic activity or industrial processes. One of the unique properties of Ferrock is that it becomes even stronger in salt water environments, making it ideal for marine-based construction projects. And rather than emitting large amounts of C02 as it dries, Ferrock actually absorbs and binds it! This results in a carbon-negative process that actually helps to trap greenhouse gases.   While the material composition and implementation techniques have already been tested at the University of Arizona, IronKast is currently in the process of commercializing the Ferrock patent and implementing it into pilot projects within marine environments. It’s carbon-negative qualities are a dramatic turn-around from the carbon release that has so long been associated with construction and there’s potential there to undo some of the widespread damage that has been done in the last couple of hundred years. But there’s skepticism from the cement industry that while Ferrock could be great for niche projects, it isn’t practical for large-scale industrial use, like highways for example. If steel dust suddenly goes from being a “waste” material to a highly-prized building resource, it’s price will increase exponentially and the costs of producing Ferrock may limit its application. But Stone is hoping that as the world starts looking towards carbon-neutral or carbon-negative building materials, Ferrock is where they will turn. He says: “It has taken years to get just a basic understanding of the chemistry involved…but this shouldn’t be surprising since scientists are still trying to figure out Portland cement and they’ve had 200 years. I am in this for the long haul…. in this era of global warming, unsustainable processes like cement manufacture will have to give way to greener alternatives….when the time comes and the world wants to build with new materials that are carbon-neutral or carbon-negative, I will be able to step forward and say, yes, I have such a material.” Even if Ferrock is not the exact answer or a cost-effective solution in the long-term future, it’s a promising starting point for developing smarter technologies that address our insatiable hunger for development and the devastating result it’s having on our environment.
Brown · Red